10.12.2016
Космический лифт

Космический лифт. Основные проблемы

Рейтинг:  0 / 5

Звезда не активнаЗвезда не активнаЗвезда не активнаЗвезда не активнаЗвезда не активна
 

С легкой руки физиков и фантастов идея космического лифта прочно засела в головах любителей космонавтики. Мало какое воображаемое будущее обходится без гигантской инфраструктуры, уносящей людей и грузы прямо на орбиту. Но будет ли создан космический лифт в реальном будущем? Как ни печально, но в этом есть большие сомнения.

Современная мода на разработку микро-, нано- и даже фемтоспутников массой менее 100 г связана не только с миниатюризацией электроники, но и с чисто экономическими причинами. Несмотря на то, что за десятилетия развития космической техники цена вывода грузов на околоземную орбиту упала на порядок, заметную долю стоимости космических миссий до сих пор составляет их доставка на место. Этот фактор серьезно тормозит всю космонавтику, превращая ее в удел лишь финансово обеспеченных организаций и закрывая путь массе разработчиков и исследователей.

Каждая ракета и каждый разгонный блок - изделие штучное, требующее месяцы, а то и годы производства - и притом одноразовое: проработав максимум десяток минут, они гибнут. Недаром и американская корпорация SрасеХ, и российские инженеры вовсю прорабатывают варианты создания хотя бы многоразовых первых ступеней - самых мощных и дорогих компонентов систем выведения. Таким проектом была разработанная в ГКНПЦ им. Хруничева «Байкал-Ангара» или проект SpaceX Grasshopper - приземляющаяся на «ножки» первая ступень для ракет семейства Falcon.

Читайте также: Программа SLS и ракеты США

Но все это лишь полумеры: снизить стоимость полетов в космос требуется на порядок, а для этого уместнее не дорабатывать старые, а прорабатывать новые технологии. И первым в их ряду будет, конечно, космический лифт, идея настолько же перспективная, насколько и простая.

Беспроблемная концепция космического лифта

Возьмите обычную веревку и быстро раскрутите вокруг себя - вот вкратце вся концепция космического лифта. Привязанный к Земле достаточно длинный и прочный трос, уходящий на околоземную орбиту, будет висеть вертикально как бы сам собой, за счет центробежной силы. Остается смонтировать на нем подъемную платформу - и можно отправляться в космос. К сожалению, на деле с реализацией простой идеи все обстоит далеко не так просто.

Пожалуй, самый знаменитый и активно развивающийся проект космического лифта пытается реализовать американский стартап LiftPort. Уже из названия его видно, что главной своей целью разработчики ставят даже не просто «космический», но «лунный» лифт, позволяющий наладить бесперебойное сообщение по линии Земля - Луна.

По расчетам специалистов компании, основная инфраструктура космического лифта должна быть привязана к плавучей морской платформе, которая обеспечит системе необходимую динамичность. Поднимающийся с нее трос будет достигать высоты порядка 100 тыс. км. Можно обойтись тросом и покороче, высотой «всего» около 35,5 тыс. км - главное, чтобы он достигал геостационарной орбиты, что позволит ему оставаться в вертикальном положении.

Таких нагрузок не выдержит даже самая прочная сталь, и чтобы трос космического лифта не разорвался под собственным весом, сделать его предлагается из углеродных нанотрубок, отличающихся и малым весом, и поразительной прочностью. Однако до сих пор производство нанотрубок длиной хотя бы несколько сантиметров остается неразрешенной технологической проблемой. Что уж говорить о километрах.

И даже если задача будет решена, графен и может не помочь.

Предполагаемая конструкция космического лифта

Основание. Подвижное позволит уклоняться от грозящих опоре троса природных катаклизмов. Стационарное удобнее в плане обеспечения лифта дешевой энергией.

Трос. Должен выдерживать как минимум свой собственный вес, вес сопутствующей инфраструктуры и центробежную силу. По расчетам, толщина его должна быстро нарастать с высотой, выходя на стационар.

Противовес. Это может быть масштабная «конечная станция» или привязанный к тросу астероид. Но если трос будет уходить за геостационарную орбиту, он будет удерживаться под собственной массой, а с конца его можно будет отпускать в полет дальние космические зонды.

Проблема первая - материал для космического лифта


Действительно, углеродные нанотрубки являются на сегодня едва ли не самым механически прочным материалом из всех известных человечеству. Сила бесчисленных sp2-связей между атомами углерода в одномерной, свернутой цилиндром кристаллической решетке невероятно высока. Но и этого недостаточно: по словам известного эксперта и футуролога Говарда Кита Хенсона (Howard Keith Henson), даже в самых оптимистичных расчетах прочность такого троса составит лишь около двух третей необходимой величины.

Хенсон считает, что сложность с нанотрубками состоит не столько в технологии, сколько в самой их структуре. Необходимо научиться производить не только длинные нанотрубки, но и идеальные, с «чистотой» не хуже чем у драгоценных камней. Иначе те самые sp2-связи, которые в графене связывают шесть атомов углерода, будут терять устойчивую конфигурацию и в местах дефектов станут охватывать 5 или 7 атомов, резко снижая прочность.

Инженер сравнивает это с зацепками на женских чулках: одно-единственное нарушение способно привести к «расползанию» всей структуры. И если до сих пор даже производство крупных, порядка сантиметровых размеров, бездефектных кристаллов остается нерешенной задачей, то будет ли она решена применительно к многокилометровым нанотрубкам? Если и будет - то не в обозримом времени, полагает Кит Хенсон. Трос космического лифта должен выдерживать до 100 МН/(кг/м), и, если даже углеродные нанотрубки достигнут такого уровня, они не должны содержать ни единого дефекта, иначе трос расползется еще до того, как мы попытаемся отправиться на нем в космос.

По некоторым оценкам, трос космического лифта должен иметь прочность более 130 ГПа. Для сравнения, кевлар достигает уровня 4 ГПа, прочнейшие виды стали - всего 5 ГПа. Теоретически, углеродные нанотрубки могут иметь прочность нужной величины (вплоть до 300 ГПа), однако на практике достигнуто лишь около 50 ГПа (и 99 ГПа в одном из экспериментов). При этом технологии изготовления длинных нанотрубок - а тем более плетения из них тросов - остаются в самом зачаточном состоянии.

Даже один из самых больших энтузиастов космических лифтов, физик Дэвид Аппель (David Appell), ведущий несколько связанных с этой темой проектов, как-то признался: «Можно ли быть уверенным, что когда-нибудь удастся создать из нанотрубок структуру размерами 100 тыс. км? К сожалению, ответить на этот вопрос пока не может никто».

Проблема вторая: колебания


Допустим, мы совершили прорыв и создали углеродные нанотрубки нужной длины, добились бездефектной структуры, сплели из них лифтовый трос и даже подняли его на нужную высоту. Что дальше? А дальше - рутинная жизнь с ее миллионом опасных деталей. Ведь такая конструкция неминуемо будет испытывать самые разнообразные воздействия, многие из которых грозят развалить все многотрудное сооружение.

Такие расчеты произвел чешский астрофизик Любое Перек (Lubos Perek), показав, что сочетание нескольких факторов - игры гравитационных сил со стороны Земли и Луны, давления частиц солнечного ветра и т.п. - может оказывать непредсказуемое воздействие на трос космического лифта. Перек выяснил, что игра этих сил способна заставить раскачиваться, вибрировать и закручиваться всю его громадную конструкцию.

Решением может стать размещение на критических участках троса специальных двигателей, которые, управляясь интеллектуальной компьютерной системой, будут компенсировать непредсказуемые воздействия среды. Но «чистота концепции» будет уже нарушена, а с ней под вопрос встанут и многие преимущества космического лифта. Двигатели нуждаются в топливе, регулярном уходе, ремонте и даже замене. Они не только затруднят движение по тросу, но и, видимо, заметно повысят стоимость эксплуатации лифта.

Но и это еще цветочки, ведь, как и всякая натянутая струна, трос космического лифта будет иметь собственную резонансную частоту внутренних колебаний. Помните историю, которую традиционно рассказывают на уроке о резонансе все школьные учителя физики, - как отряд солдат, маршируя по мосту, случайно «попал» в его резонансную частоту - и разрушил весь мост? Примерно то же угрожает и космическому лифту.

Чтобы предусмотреть и эту угрозу, на ряде участков троса потребуется установить узлы, демпфирующие опасные колебания.

А это снова дополнительное усложнение конструкции, новые инженерные проблемы и финансовые затраты... И если бы этим все ограничилось: на самом деле проблем у троса будет куда больше.

Чтобы сократить размеры троса, избавиться от его чрезмерного утолщения и опасностей нижних слоев атмосферы, основание лифта можно разместить на высотной - до 100 км - башне. В августе 2015 года канадская компания Thoth Technology Inc. даже запатентовала подобный проект

Башня ThothX Tower, которую планируют соорудить канадцы, должна достичь высоты пока умеренной - «всего-навсего» 20 км - и сможет питаться за счет энергии ветра, возникающего из-за разницы давлений у ее основания и на вершине. По расчетам инженеров, ее можно использовать и в качестве стартовой площадки для ракет позволяя существенно удешевить традиционные космические запуски. Проблема с башней лишь одна: проект неосуществим технологически.

Проблема третья: пассажиры космического лифта


Особенные трудности может создать... само перемещение груженого космического лифта по тросу. Как и все, что движется на вращающейся Земле под углом к оси ее вращения, груз будет испытывать влияние силы Кориолиса. Поднимаясь вверх, лифт будет отклоняться в противоположном вращению Земли направлении. Это воздействие также уже просчитано физиками.

По словам проведшего такую работу канадского ученого Аруна Мисры (Arun Misra), это влияние заставит лифт раскачиваться, как перевернутый неустойчивый маятник. В результате «пункт назначения» на орбите, в который будут прибывать люди и грузы, может оказаться не совсем там, куда они направлялись. Для вывода аппаратов на орбиту это совершенно неприемлемо.

Более того, вибрации, распространяющиеся вдоль троса, приведут к неравномерному движению «кабины», которая на одних участках будет замедляться, а на других-ускоряться, «подгоняемая» волнами. Разумеется, можно предложить ряд механизмов для компенсации и этого эффекта. Например, помочь может крайне медленный и осторожный, контролируемый подъем, который, по расчетам Аруна Мисры, займет несколько недель.

Другой вариант заключается в крайне точной координации движения одновременно многих кабин, которые будут взаимно компенсировать воздействия друг друга на трос. Но это снова усложнение и удорожание всей инфраструктуры. Кажется, идея космического лифта уже не выглядит такой привлекательной? Но подождите: мы еще не закончили.

Проблема четвертая: космический мусор

Не так давно орбита Международной космической станции была в какой уже раз скорректирована, чтобы уклониться от столкновения с очередным обломком космического мусора. С циклопической конструкцией лифта такое не пройдет: переместить ее будет практически невозможно. А между тем, проходя сквозь низкую околоземную орбиту и достигая геостационарной, он будет «подставляться под удар» и десятков работающих спутников, и тысяч обломков уже вышедших из строя аппаратов, ступеней ракет и разгонных блоков. Не забудем и про опасность встречи с метеоритами!

Избежать этого вообще вряд ли получится, и любой космический лифт должен быть изначально рассчитан на регулярные и опасные столкновения. Как этого добиться, также пока неясно: обломки космического мусора могут быть не так уж и велики, однако движутся они на огромных скоростях, при которых, говоря словами поэта, «песчинка обретает силу пули». Уже знакомый нам Говард Кит Хенсон подсчитал, что энергия таких ударов легко достигает уровня, который грозит попросту испарить несколько метров троса.

Не так уж и сложно оснащать все космические аппараты, орбиты которых грозят пересечься с тросом лифта, системами активного уклонения. Но как быть с уже работающими спутниками? А с космическим мусором? По имеющимся оценкам, его количество на орбите исчисляется несколькими тысячами тонн. И прежде чем мы начнем развертывание мегатроса для нашего суперлифта, в космосе придется прибрать.
В качестве одного из вариантов защиты предлагается установка на критических участках лифта мощных лазерных систем, работающих на манер «противовоздушной защиты» и уничтожающих мусор, грозящий столкновением. Но это - правильно! - означает новое усложнение и удорожание нашего замечательного проекта.

Проблемы пятая и шестая: износ космического лифта и радиация


Если вам показалось мало четырех ключевых проблем космического лифта, упомянем еще пару. Они не столь значительны, но также требуют внимания - и к решению обязательны.

Износ и коррозия. Под действием жестких факторов в атмосфере и агрессивной космической среде и трос лифта, и его детали будут неизбежно портиться. Необходимо предусмотреть варианты восстановления материалов, регулярного ремонта всей конструкции и ухода за ней.

Радиация. Путь космического лифта будет проходить не только в атмосфере, но и далеко за ее пределами. Не минет он и радиационных поясов Земли (в западной литературе их называют поясами Ван Аллена) - областей, где в огромном числе удерживаются захваченные магнитосферой планеты заряженные и высокоэнергетические частицы, в основном протоны и электроны. Внутренний радиационный пояс расположен на высоте порядка 4 тыс. км, внешний - 17 тыс. км, и любое путешествие людей через эти области чревато очень серьезной опасностью. Поэтому для пассажиров космического лифта обязательно должны быть предусмотрены меры радиационной защиты.

Но и это не все. Даже если мы установим в кабине лифта мощные экраны, блокирующие поток высокоэнергетических частиц, нас ждет другой спектр проблем, отнюдь не технологических.

Проблема седьмая: общество


Допустим, международная кооперация и лучшие умы человечества решат все озвученные сложности и космический лифт гордо вознесется над Землей, попирая суровую гравитацию. Колоссальное сооружение, разумеется, станет одним из ключевых символов прогресса, успеха и процветания западной, научноориентированной цивилизации. А значит, превратится в привлекательный объект для всех ее противников.

Разрушение космического лифта в результате террористических атак могло бы стать событием, которое и по масштабам, и по эффекту воздействия затмит все произошедшее 11 сентября 2001 года в Нью-Йорке и после этого. Гибель этой громадины будет серьезным ударом и в финансовом, и в самом прямом смысле: представьте себе неконтролируемое падение троса длиной в десятки тысяч километров и многотонной массы со всеми смонтированными на нем элементами... Неудивительно, что лифт должен быть стопроцентно защищен от всех возможных атак с суши и воздуха.

Кстати, именно эти соображения стали одной из важных причин, по которым наземную инфраструктуру космического лифта предлагается возвести на морской платформе, оборонять которую от самодеятельных террористов намного легче. Но и тут нас ожидают малопредсказуемые последствия - уже со стороны экологических активистов.

Их тревогу можно понять: как отмечают многие защитники планеты, большой масштаб грузовых перевозок вдоль лифтового троса чреват появлением у Земли намертво привязанной к ней дополнительной массы. Элементарные расчеты показывают, что при колоссальной длине троса это способно повлиять даже на скорость вращения планеты вокруг своей оси, замедляя его. Последствия такого влияния могут быть действительно непредсказуемы. И даже если мы замедлим Землю на несколько наносекунд, можно ждать самых яростных протестов «зеленых» - например, под лозунгами вроде «Сохраним угловой момент планеты!».

Без проблем: на Луне

Кажется, проблемы космического лифта неисчислимы и практически нерешаемы. Но что если перевернуть концепцию проекта в буквальном смысле с ног наголову?.. С таким предложением некоторое время назад выступил американский инженер и разработчик космической техники Джером Пирсон (Jerome Pearson). «Похоже, на Земле такой проект имеет мало смысла, - пишет он, - но Луна -это совершенно другое дело».

Конечно, под действием земного притяжения Луна не вращается вокруг своей оси, оставаясь повернутой к нам лишь одной своей стороной. Но в этом Джером Пирсон видит даже плюс, предлагая «закрепить» трос космического лифта, начинающегося на поверхности спутника, не за счет центробежной силы, а за счет гравитации Земли. Достаточно лишь утяжелить его дальний конец соответствующей массой: по расчетам Пирсона, при весе порядка 100 тыс. тонн такая конструкция позволит ежегодно доставлять на Луну в три-четыре раза больше грузов.

Кажется, идея не лишена смысла. Теоретически, «лунный лифт» не требует даже сверхпрочных материалов, не говоря уж о замечательной - почти идеальной - защищенности от террористических атак. Идею поддерживает и Кит Хенсон, который подсчитал, что для подъема 1000 тонн грузов системе потребуется работа средних размеров электростанции - всего на 15 МВт - и при этом она сможет доставлять их на расстояние до 190 тыс. км, на переходную орбиту к Земле.

Если человечество всерьез начнет разработку лунных ресурсов, возможно, проект весьма пригодится. Ну а пока на Земле космический лифт вряд ли возможен по технологическим причинам, с Луны же нам просто нечего возить в таких количествах. Похоже, лифт задерживается.

  1. Последние
  2. Популярные
Загрузка...

Новости технологий сегодня

Наш сайт посвящен новостям в сфере высоких технологий, а также инноваций в мире интернета, автопромышленности.

Представлены материалы по развитию технологических компаний и стартапов. Интересным будет информация по настройке и хакингу гаджетов и устройств на Android, Apple iOS и прочее. Покажем как правильно выбирать устройства для покупок.

В процессе наших экспериментов с сайтами по оптимизации и настройке, в рубрике Вебмастер Мы делимся своим опытом в том как создать свой сайт на популярных платформах Joomla, Wordpress, настроить его и оптимизировать.

Самые популярные метки